TMARKER

TMARKER
TMARKER

TMARKER assists in cell nuclei counting and staining estimation of pathological immunohistochemical TMA images and non-TMA images.

Two main scenarios are adressed with TMARKER:

  • You want to know how many cell nuclei on the image are positive and negative for a certain protein. Therefore, you already did an immunohistochemical staining experiment. TMARKER provides reproducable, stable and accurate cell counting and staining estimation assistance with color deconvolution.
  • For staining estimation, you only want to consider one type of cells in the image (e.g. only relevant cancer cells). TMARKER provides modern machine learning algorithms that detect these relevant cells in the image and perform staining estimation only on these cells. Also this procedure is reproducable, stable and transferable.

Visit NEXUS.ethz.ch for more information and download.

Academic Partners:

TMARKER: A Free Software Toolkit for Histopathological Cell Counting and Staining Estimation.
Peter J. Sch├╝ffler, Thomas J. Fuchs, Cheng S. Ong, Peter Wild and Joachim M. Buhmann.
Journal of Pathology Informatics, vol. 4, 2, p. 2, 2013
PDF   URL   BibTeX   Endnote / RIS   Abstract
Download BibTeX citation
@article{schuffler_tmarker:_2013,
    title = {{TMARKER}: {A} {Free} {Software} {Toolkit} for {Histopathological} {Cell} {Counting} and {Staining} {Estimation}},
    volume = {4},
    url = {http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2013;volume=4;issue=2;spage=2;epage=2;aulast=Sch%FCffler;t=6},
    doi = {10.4103/2153-3539.109804},
    abstract = {Background: Histological tissue analysis often involves manual cell counting and staining estimation of cancerous cells. These assessments are extremely time consuming, highly subjective and prone to error, since immunohistochemically stained cancer tissues usually show high variability in cell sizes, morphological structures and staining quality. To facilitate reproducible analysis in clinical practice as well as for cancer research, objective computer assisted staining estimation is highly desirable. Methods: We employ machine learning algorithms as randomized decision trees and support vector machines for nucleus detection and classification. Superpixels as segmentation over the tissue image are classified into foreground and background and thereafter into malignant and benign, learning from the user's feedback. As a fast alternative without nucleus classification, the existing color deconvolution method is incorporated. Results: Our program TMARKER connects already available workflows for computational pathology and immunohistochemical tissue rating with modern active learning algorithms from machine learning and computer vision. On a test dataset of human renal clear cell carcinoma and prostate carcinoma, the performance of the used algorithms is equivalent to two independent pathologists for nucleus detection and classification. Conclusion: We present a novel, free and operating system independent software package for computational cell counting and staining estimation, supporting IHC stained tissue analysis in clinic and for research. Proprietary toolboxes for similar tasks are expensive, bound to specific commercial hardware (e.g. a microscope) and mostly not quantitatively validated in terms of performance and reproducibility. We are confident that the presented software package will proof valuable for the scientific community and we anticipate a broader application domain due to the possibility to interactively learn models for new image types.},
    number = {2},
    journal = {Journal of Pathology Informatics},
    author = {Sch\"uffler, Peter J. and Fuchs, Thomas J. and Ong, Cheng S. and Wild, Peter and Buhmann, Joachim M.},
    year = {2013},
    pages = {2}
}
Download Endnote/RIS citation
TY - JOUR
TI - TMARKER: A Free Software Toolkit for Histopathological Cell Counting and Staining Estimation
AU - Sch├╝ffler, Peter J.
AU - Fuchs, Thomas J.
AU - Ong, Cheng S.
AU - Wild, Peter
AU - Buhmann, Joachim M.
T2 - Journal of Pathology Informatics
AB - Background: Histological tissue analysis often involves manual cell counting and staining estimation of cancerous cells. These assessments are extremely time consuming, highly subjective and prone to error, since immunohistochemically stained cancer tissues usually show high variability in cell sizes, morphological structures and staining quality. To facilitate reproducible analysis in clinical practice as well as for cancer research, objective computer assisted staining estimation is highly desirable. Methods: We employ machine learning algorithms as randomized decision trees and support vector machines for nucleus detection and classification. Superpixels as segmentation over the tissue image are classified into foreground and background and thereafter into malignant and benign, learning from the user's feedback. As a fast alternative without nucleus classification, the existing color deconvolution method is incorporated. Results: Our program TMARKER connects already available workflows for computational pathology and immunohistochemical tissue rating with modern active learning algorithms from machine learning and computer vision. On a test dataset of human renal clear cell carcinoma and prostate carcinoma, the performance of the used algorithms is equivalent to two independent pathologists for nucleus detection and classification. Conclusion: We present a novel, free and operating system independent software package for computational cell counting and staining estimation, supporting IHC stained tissue analysis in clinic and for research. Proprietary toolboxes for similar tasks are expensive, bound to specific commercial hardware (e.g. a microscope) and mostly not quantitatively validated in terms of performance and reproducibility. We are confident that the presented software package will proof valuable for the scientific community and we anticipate a broader application domain due to the possibility to interactively learn models for new image types.
DA - 2013///
PY - 2013
DO - 10.4103/2153-3539.109804
VL - 4
IS - 2
SP - 2
UR - http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2013;volume=4;issue=2;spage=2;epage=2;aulast=Sch%FCffler;t=6
ER -
Background: Histological tissue analysis often involves manual cell counting and staining estimation of cancerous cells. These assessments are extremely time consuming, highly subjective and prone to error, since immunohistochemically stained cancer tissues usually show high variability in cell sizes, morphological structures and staining quality. To facilitate reproducible analysis in clinical practice as well as for cancer research, objective computer assisted staining estimation is highly desirable. Methods: We employ machine learning algorithms as randomized decision trees and support vector machines for nucleus detection and classification. Superpixels as segmentation over the tissue image are classified into foreground and background and thereafter into malignant and benign, learning from the user's feedback. As a fast alternative without nucleus classification, the existing color deconvolution method is incorporated. Results: Our program TMARKER connects already available workflows for computational pathology and immunohistochemical tissue rating with modern active learning algorithms from machine learning and computer vision. On a test dataset of human renal clear cell carcinoma and prostate carcinoma, the performance of the used algorithms is equivalent to two independent pathologists for nucleus detection and classification. Conclusion: We present a novel, free and operating system independent software package for computational cell counting and staining estimation, supporting IHC stained tissue analysis in clinic and for research. Proprietary toolboxes for similar tasks are expensive, bound to specific commercial hardware (e.g. a microscope) and mostly not quantitatively validated in terms of performance and reproducibility. We are confident that the presented software package will proof valuable for the scientific community and we anticipate a broader application domain due to the possibility to interactively learn models for new image types.
TMARKER: A Robust and Free Software Toolkit for Histopathological Cell Counting and Immunohistochemical Staining Estimations.
Peter J. Schueffler, Niels Rupp, Cheng S. Ong, Joachim M. Buhmann, Thomas J. Fuchs and Peter J. Wild.
German Society of Pathology 97th Annual Meeting, 2013
PDF    URL   BibTeX   Endnote / RIS   Abstract
Download BibTeX citation
@inproceedings{schueffler_tmarker:_2013,
    title = {{TMARKER}: {A} {Robust} and {Free} {Software} {Toolkit} for {Histopathological} {Cell} {Counting} and {Immunohistochemical} {Staining} {Estimations}},
    url = {http://link.springer.com/article/10.1007%2Fs00292-013-1765-2},
    abstract = {Aims. Assessment of immunhistochemical staining intensity and percentage of positive cells generally suffers from high inter- and intra-observer variability. Besides, estimation of the intensity and percentage of immunostained cells often involves manual cell counting and is therefore time consuming.
    Methods. A novel, free, and open-source software toolkit was developed, connecting already available work flows for computational pathology and immunohistochemical tissue assessment with modern active learning algorithms from machine learning and computer vision.
    Results. A new and platform independent software program, called TMARKER, was developed and introduced. The validity and robustness of the used algorithms has been shown on a test dataset of human renal clear cell carcinomas and prostate carcinomas.
    Conclusions. This new software program together with a user-friendly Java-based graphical user interface enabled comprehensive computational assistance in pathological tissue rating. Routine use of this software toolkit may provide more reliable and robust biomarkers for treatment decision.},
    booktitle = {German {Society} of {Pathology} 97th {Annual} {Meeting}},
    author = {Schueffler, Peter J. and Rupp, Niels and Ong, Cheng S. and Buhmann, Joachim M. and Fuchs, Thomas J. and Wild, Peter J.},
    year = {2013},
}
Download Endnote/RIS citation
TY - CONF
TI - TMARKER: A Robust and Free Software Toolkit for Histopathological Cell Counting and Immunohistochemical Staining Estimations
AU - Schueffler, Peter J.
AU - Rupp, Niels
AU - Ong, Cheng S.
AU - Buhmann, Joachim M.
AU - Fuchs, Thomas J.
AU - Wild, Peter J.
AB - Aims. Assessment of immunhistochemical staining intensity and percentage of positive cells generally suffers from high inter- and intra-observer variability. Besides, estimation of the intensity and percentage of immunostained cells often involves manual cell counting and is therefore time consuming.
Methods. A novel, free, and open-source software toolkit was developed, connecting already available work flows for computational pathology and immunohistochemical tissue assessment with modern active learning algorithms from machine learning and computer vision.
Results. A new and platform independent software program, called TMARKER, was developed and introduced. The validity and robustness of the used algorithms has been shown on a test dataset of human renal clear cell carcinomas and prostate carcinomas.
Conclusions. This new software program together with a user-friendly Java-based graphical user interface enabled comprehensive computational assistance in pathological tissue rating. Routine use of this software toolkit may provide more reliable and robust biomarkers for treatment decision.
C3 - German Society of Pathology 97th Annual Meeting
DA - 2013///
PY - 2013
UR - http://link.springer.com/article/10.1007%2Fs00292-013-1765-2
ER -
Aims. Assessment of immunhistochemical staining intensity and percentage of positive cells generally suffers from high inter- and intra-observer variability. Besides, estimation of the intensity and percentage of immunostained cells often involves manual cell counting and is therefore time consuming. Methods. A novel, free, and open-source software toolkit was developed, connecting already available work flows for computational pathology and immunohistochemical tissue assessment with modern active learning algorithms from machine learning and computer vision. Results. A new and platform independent software program, called TMARKER, was developed and introduced. The validity and robustness of the used algorithms has been shown on a test dataset of human renal clear cell carcinomas and prostate carcinomas. Conclusions. This new software program together with a user-friendly Java-based graphical user interface enabled comprehensive computational assistance in pathological tissue rating. Routine use of this software toolkit may provide more reliable and robust biomarkers for treatment decision.
TMARKER: A User-Friendly Open-Source Assistance for Tma Grading and Cell Counting.
Peter J. Schueffler, Thomas J. Fuchs, Cheng S. Ong, Peter Wild and Joachim M. Buhmann.
Histopathology Image Analysis (HIMA) Workshop at the 15th International Conference on Medical Image Computing and Computer Assisted Intervention MICCAI, 2012
PDF    URL   BibTeX   Endnote / RIS   Abstract
Download BibTeX citation
@inproceedings{schueffler_tmarker:_2012,
    title = {{TMARKER}: {A} {User}-{Friendly} {Open}-{Source} {Assistance} for {Tma} {Grading} and {Cell} {Counting}},
    booktitle = {Histopathology {Image} {Analysis} ({HIMA}) {Workshop} at the 15th {International} {Conference} on {Medical} {Image} {Computing} and {Computer} {Assisted} {Intervention} {MICCAI}},
    author = {Schueffler, Peter J. and Fuchs, Thomas J. and Ong, Cheng S. and Wild, Peter and Buhmann, Joachim M.},
    year = {2012}
}
Download Endnote/RIS citation
TY - CONF
TI - TMARKER: A User-Friendly Open-Source Assistance for Tma Grading and Cell Counting
AU - Schueffler, Peter J.
AU - Fuchs, Thomas J.
AU - Ong, Cheng S.
AU - Wild, Peter
AU - Buhmann, Joachim M.
C3 - Histopathology Image Analysis (HIMA) Workshop at the 15th International Conference on Medical Image Computing and Computer Assisted Intervention MICCAI
DA - 2012///
PY - 2012
ER -